1. Nystrom, E.; Burns, D. TOPMODEL Simulations of Streamflow and Depth to Water Table in Fishing Brook Watershed. U.S. Geological Survey, 2007.
2. Graham, D.N.; Butts, M. Flexible, integrated watershed modelling with MIKE SHE in Watershed Models. DHI Water & Environment, 2005.
3. Yang, D.; Herath, S.; Musiake, K. Comparison of different distributed hydrological models for characterization of catchment spatial variability. Hydrol. Processes 2000, 14, 403–416.
4. Wang, L. Development of a Distributed Runoff Model coupled with a Land Surface Scheme, 2007.
5. Garambois, P.; Roux, H.; Larnier, K.; Labat, D.; Dartus, D. Characterization of catchment behaviour and rainfall selection for flash flood hydrological model calibration. Hydrol. Sci. J. 2015, 60, 424–447.
6. Tsuda, M.; Iwami, Y. Application of Flood Forecasting and Analysis Model (IFAS) for Wadi Flash Flood. Proceedings of the Second International Symposium on FlashFloods in Wadi Systems, 2016.
7. Ranzi, R.; Bacchi, B.; Grossi, G. Runoff measurements and hydrological modelling for the estimation of rainfall volumes in an alpine basin. J. Royal Meteorol. 2003,129, 653–672.
8. Liu, Y.B.; De Smedt, F. WetSpa Extension, A GIS–based Hydrologic Model for Flood Prediction and Watershed Management, Department of Hydrology and Hydraulic Engineering Vrije Universiteit Brussel, 2004.
9. Tachikawa, Y.; Shiiba, M. Development of a Basin Runoff Simulation System Based on a New Digital Topographic Model. Doboku Gakkai Ronbunshu 2001, 691/II–57, 43–52.
10. Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J.; King, K. Soil Water Assessment Tool Theoretical Documentation. Texas Water Resources Institute, 2002.
11. Lập, B.Đ. Nghiên cứu phát triển mô hình thủy văn thông số phân bố trong dự báo lũ cho các lưu vực sông ở Việt Nam.
12. Duan, Q.; Sorooshian, S.; Gupta, V.K. Optimal use of the SCE–UA global optimization method for calibrating watershed models. J. Hydrol. 1994, 158, 265–284.
13. Duan, Q. A Global Optimization Strategy for Efficient and Effective Calibration of Hydrologic Models, The University of Arizona, 1991.
14. Jiang, S.; Yang, S. A Strength Pareto Evolutionary Algorithm Based on Reference Direction for Multiobjective and Many–Objective Optimization. IEEE Trans. Evol. Comput. 2017, 21, 329–346. https://doi.org/10.1109/TEVC.2016.2592479.
15. Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm for multiobjective optimization. Proceedings of the EUROGEN'2001. Athens. Greece, September 19–21, 2001.
16. Bader, J.; Zitzler, E. HypE: An Algorithm for Fast Hypervolume–Based Many–Objective Optimization. Evol. Comput. 2011, 19, 45–76. https://doi.org/10.1162/EVCO_a_00009.
17. Wang, R. Preference–inspired Co–evolutionary Algorithms. University of Sheffield, 2013.
18. Zhang, Q.; Li, H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Comput. 2008, 11, 712–731. https://doi.org/10.1109/TEVC.2007.892759.
19. Deb, K.; Jain, H. An Evolutionary Many–Objective Optimization Algorithm Using Reference–Point–Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601.
20. Li, M.; Liu, X.; Yang, S. Shift–Based Density Estimation for Pareto–Based Algorithms in Many–Objective Optimization. IEEE Trans. Evol. Comput. 2014, 18, 348–365.