1. Pyreddy, P.; Croft, W.B. Tinti: A system for retrieval in text tables title2. Technical report, USA, 1997.
2. Schreiber, S.; Agne, S.; Wolf, I.; Dengel, A.; Ahmed, S. DeepDeSRT: deep learning for detection and structure recognition of tables in document images. Proceeding of the14th IAPR International Conference on Document Analysis and Recognition (ICDAR), 2017.
3. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R–CNN: Towards real–time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 1137–1149.
4. Dai, J.; Li, Y.; He, K.; Sun, J. R–FCN: Object detection via region–based fully convolutional networks. Proceeding of the 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 2016, 379–387.
5. Marmot Dataset. Institute of Computer Science and Techonology of Peking University and Institute of Digital Publishing of Founder R&D Center, China, http://www.icst.pku.edu.cn/cpdp/data/ marmot_data.htm, 2010.
6. Göbel, M.; Hassan, T.; Oro, E.; Orsi, G. ICDAR 2013 Table Competition. Proceeding of the 12th International Conference on Document Analysis and Recognition, 2013, 1449–1453.
7. Siddiqui, S.A.; Fateh, I.A.; Rizvi, S.T.R.; Dengel, A.; Ahmed, S. DeepTabStR: Deep Learning based Table Structure Recognition. International Conference on Document Analysis and Recognition (ICDAR), 2019, 1403–1409.
8. Prasad, D.; Gadpal, A.; Kapadni, K.; Visave, M.; Sultanpure, K. CascadeTabNet: An approach for end to end table detection and structure recognition from image–based documents. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020.
9. Gao, G.; Huang, Y.; Dejean, H.; Meunier, J.; Yan, Q.; Fang, Y.; Kleber, F.; Lang, E. Icdar 2019 competition on table detection and recognition (ctdar). International Conference on Document Analysis and Recognition (ICDAR), 2019, 1510–1515.
10. Li, M.; Cui, L.; Huang, S.; Wei, F.; Zhou, M.; Li, Z. Tablebank: Table benchmark for image–based table detection and recognition. Proceedings of the 12th Conference on Language Resources and Evaluation, 2020, 1918–1925.
11. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition, 2014. ISBN:978-1-4799-5118-5.
12. Girshick, R. Fast R–CNN. Proceedings of the IEEE international conference on computer vision, 2015.
13. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask r–cnn. ICCV. IEEE 2017, 2980–2988.
14. Cai, Z.; Vasconcelos, N. Cascade R–CNN: high quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 1483–1498.
15. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. IEEE International Conference on Computer Vision (ICCV) 2017, 1, pp. 1-3.
16. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, 770–778.
17. Lin, T.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, 936–944, doi: 10.1109/CVPR.2017.106.
18. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In: Fleet D., Pajdla T., Schiele B., Tuytelaars T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8693. Springer, Cham. 2014, pp. 740–755. https://doi.org/10.1007/978-3-319-10602-1_48.
19. Rezatofighi, H.; Tsoi, N.; Gwak, J.Y.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized intersection over union: A metric and a loss for bounding box regression. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 658–666.
20. Chen, K.; Wang, J.; Pang, J.; Cao, Y.; Xiong, Y.; Li, X.; Sun, S.; Feng, W.; Liu, Z.; Xu, J.; Zhang, Z.; Cheng, D.; Zhu, C.; Cheng, T.; Zhao, Q.; Li, B.; Lu, X.; Zhu, R.; Wu, Y.; Dai, J.; Wang, J.; Shi, J.; Ouyang, W.; Loy, C.C.; Lin, D. Mmdetection: Open MMLab detection toolbox and benchmark. CoRR, abs/1906.07155, 2019.