Tác giả
Đơn vị công tác
1 Faculty of Environmental Department, Ho Chi Minh City University of Natural Resources and Environment, HCMC, Vietnam; bkvanh@hcmunre.edu.vn
*Corresponding author: bkvanh@hcmunre.edu.vn; Tel.: +84–908.836.115
Tóm tắt
Hydrological models can simulate water balance and predict water behaviors in any catchments; however, accuracy of model always is questioned. Therefore, calibration and validation processes are required for any models to acquire realistic expectations. TETIS model is a conceptual distribution model applied to simulate dynamic of hydrology based on water balance calculation, sediment erosion, and other constituents. As many other hydrological models, calibration and validation are important to evaluate the accuracy. Thus, an appropriate calibration facilitates the model effectiveness. Recently, auto calibration approach has been promoted due to availability of the optimization algorithm. In contrast, manual calibration requires time consuming, expert knowledge and calculation effort. But manual calibration is suitable for unconventional calibration, such as lack of streamflow observation and specific conditions. In this study, a manual calibration has been employed to evaluate how water balance changed under assumptions that there are partial irrigation and without irrigation activity. The results showed that there are considerable effects from different irrigation scenarios on the water balances, but the stream flow is insignificantly affected.
Từ khóa
Trích dẫn bài báo
Anh, B.K.V. Manual calibration of TETIS model in the Mar Menor lagoon subcatchment. VN J. Hydrometeorol. 2022, EME4, 224-233.
Tài liệu tham khảo
1. Hrachowitz, M.; Clark, M.P. The complementary merits of competing modelling philosophies in hydrology. Hydrol. Earth Syst. Sci. 2017, 21, 3953–3973.
2. Hamby, D.M. A Review of Techniques for Parameter Sensitivity Analysis of Environmental Models. Environ. Monit. Assess. 1994, 32, 135–154.
3. Boyle, D.P.; Gupta, H.V.; Sorooshian, S. Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods. Water Resour. Res. 2000, 36(12), 3663–3674. doi:10.1029/2000WR900207.
4. Vélez, J.J.; Puricelli, M.; López Unzu, F.; Francés, F. Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework. Hydrol. Earth Syst. Sci. 2009, 13(2), 229–246. doi:10.5194/hess-13-229-2009.
5. Francés, F.; Vélez, J.J.J.I.; Vélez, J.J.J.I. Split-parameter structure for the automatic calibration of distributed hydrological models. J. Hydrol. 2007, 332(1–2), 226–240. doi:10.1016/j.jhydrol.2006.06.032.
6. Francés, F.; Upegui, J.V.; Múnera, J.C.; Medici, C.; Bussi, G. Description of the Distributed Conceptual Hydrological Model Tetis V . 9.0.2. Universitat Politacnica De Valencia - IIAMA, 2019, pp. 82.
7. Alcolea, A.; Contreras, S.; Hunink, J.E.; García-Aróstegui, J.L.; Jiménez-Martínez, J. Hydrogeological modelling for the watershed management of the Mar Menor coastal lagoon (Spain). Sci. Total Environ. 2019, 663, 901–914. doi: 10.1016/j.scitotenv.2019.01.375.
8. Conesa, M.; Jime, F.J. The Mar Menor lagoon (SE Spain): A singular natural ecosystem threatened by human activities. Mar. Pollut. Bull. 2007, 54, 839–849. doi: 10.1016/j.marpolbul.2007.05.007.
9. Puertes, C. Exploring the possibilities of parsimonious nitrogen modelling in different ecosystems,” Universitat Politècnica de València, 2020.
10. Contreras, S.; Hunink, J.E.; Baille, A. Building a Watershed Information System for the Campo de Cartagena basin (Spain) integrating hydrological modeling and remote sensing. 2014, pp. 59. doi: 10.13140/2.1.2032.9281.
11. Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58(6), 1763–1785. doi:10.13031/trans.58.10715.
12. García, G.; Muñoz-vera, A. Characterization and evolution of the sediments of a Mediterranean coastal lagoon located next to a former mining area. Mar. Pollut. Bull. 2015, 100(1), 249–263. doi: 10.1016/j.marpolbul.2015.08.042.
13. Hesse, C.; Stefanova, A.; Krysanova, V. Comparison of Water Flows in Four European Lagoon Catchments under a Set of Future Climate Scenarios. Water 2015, 7(2) 716–746. doi: 10.3390/w7020716.
14. Varez-Rogel, J.A. Phosphorus and Nitrogen Content in the Water ( Se Spain ): Relationships With Effluents From Urban and agricultural areas. Wetlands 2006, 21–38. doi: 10.1007/s11270-006-9020-6.
15. Causapé, J.; Quílez, D.; Aragüés, R. Assessment of irrigation and environmental quality at the hydrological basin level: II. Salt and nitrate loads in irrigation return flows. Agric. Water Manag. 2004, 70(3), 211–228. doi: 10.1016/j.agwat.2004.06.006.
16. Nash, J.E.; Sutcliffe, J.V. River flow forcasting through conceptual models part 1 - A discussion of princiles. J. Hydrol. 1970, 10(3), 282–290.