Tác giả

Đơn vị công tác

Research Center for Climate Change, Nong Lam University Ho Chi Minh city, Ho Chi Minh city, Vietnam; tu.lehoang@hcmuaf.edu.vn

International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan; pochi@cc.tuat.ac.jp

*Corresponding author: tu.lehoang@hcmuaf.edu.vn; Tel.: +84–931844631

Tóm tắt

Modeling approach has considered as an effective alternative method for environmental risk assessment in recent decades. This work aimed to assess the pesticide fate and transport from rice paddy which has higher potential of pesticide runoff compared to upland fields as reported in previous studies. The study area was the Sakura River watershed, Ibaraki Prefecture, Japan. For modeling rice pesticide, the study applied the PCPF–1@SWAT2012 model. The model was used to simulate concentration of a rice pesticide namely fipronil (C12H4Cl2F6N4OS) in 2009. The simulated streamflow and pesticide concentration were calibrated and validated. The results showed that the maximum pesticide concentrations at the monitored point in the wastershed was 0.008 μg/L in rice paddy cultivation season of 2009. In conclusion, the modeling of the pesitcide was successfully performed in the Sakura River watershed by using the PCPF–1@SWAT2012 model. The fate and transport of the pesticide were assessed. Thus, the modeling can be useful tool for environmental risk assessment.

Từ khóa

Trích dẫn bài báo

Tu, L.H.; Watanabe, H. Assessing pesticide fate and transport following modeling approach: A case study of fipronil in the Sakura River watershed, Japan VN J. Hydrometeorol2022, EME4, 103-111. 

Tài liệu tham khảo

1. Mohanty, S.. Trends in global rice consumption. Rice today 2, 2013.

2. FAOSTAT. Global Rice consumption. Food Agric. Organ. 2016. URL (accessed Apr.10.2017).

3. Gianessi, L. Importance of Pesticides for Growing Rice in South and South East Asia. Crop. Int. 2014, pp. 4.

4. Savary, S.; Willocquet, L.; Elazegui, F.A.; Teng, P.S.; Du, P.; Van, Zhu, D.; Tang, Q.; Huang, S.; Lin, X.; Singh, H.M.; Srivastava, R.K. Rice pest constraints in tropical Asia: characterization of injury profiles in relation to production situations. Am. Phytopathol. Soc. 200084, 341–356.

5. Lamers, M.; Anyusheva, M.; La, N.; Nguyen, V.V.; Streck, T. Pesticide Pollution in Surface– and Groundwater by Paddy Rice Cultivation: A Case Study from Northern Vietnam. Clean Soil, Air, Water 201139, 356–361.

6. Numabe, A.; Nagahora, S. Estimation of pesticide runoff from paddy fields to rural rivers. Water Sci. Technol. 200653, 139–146.

7. Nakano, Y.; Miyazaki, A.; Yoshida, T.; Ono, K.; Inoue, T. A study on pesticide runoff from paddy fields to a river in rural region – 1: Field survey of pesticide runoff in the Kozakura River, Japan. Water Res. 200438, 3017–3022.

8. FAOSTAT. Rice Production Quantity. Food Agric. Organ. 2014. URL (accessed Apr.10.2017).

9. Inao, K.; Watanabe, H.; Karpouzas, D.G. Simulation Models of Pesticide Fate and Transport in Paddy Environment for Ecological Risk Assessment and Management. Jpn. Agric. Res. Q. 200842, 13–21.

10. Kawata, K.; Kose, T. Behavior of Pesticides and Their Transformation Products in River Water in Japan. 2012.

11. Iwafune, T.; INao, K.; Horio, T.; Iwasaki, N.; Yokoyama, A.; Nagai, T. Behavior of paddy pesticides and major metabolites in the Sakura River, Ibaraki, Japan. Pestic. Sci. 201035, 114–123.

12. Vu, S.H.; Watanabe, H.; Ishihara, S. Probabilistic risk assessment through pesticide fate modeling for evaluating management practices to prevent pesticide runoff from paddy fields. In: The 11th IUPAC International Congress on the Chemistry of Crop Protection. Kobe, Japan, 2006, pp. 263.

13. Uddin, H.; Amin, A.K.M.R.; Haque, M.; Islam, A.; Azim, M.E. Impacts of organophosphate pesticide , sumithion on water quality and benthic invertebrates in aquaculture ponds. Aquac. Reports. 20163, 88–92.

14. Boulange, J.; Watanabe, H.; Inao, K.; Iwafune, T.; Zhang, M.; Luo, Y.; Arnold, J. Development and validation of a basin scale model PCPF–1@SWAT for simulating fate and transport of rice pesticides. J. Hydrol. 2014517, 146–156.

15. Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J. Soil & Water Assessment Tool Theoretical Documentation Version 2009. Texas Water Resour. Institute, TR–406. 2011.

16. Karpouzas, D.G.; Ribarbelli, C.; Pastori, M.; Capri E. Landscape risk analysis for pesticides applied to rice paddies. Agron. Sustain. Dev. 200626(3), 167–177.

17. METI and NASA. The ASTER Global Digital Elevation Model (ASTER GDEM). The Ministry of Economy, Trade, and Industry (METI) of Japan The United States National Aeronautics and Space Administration (NASA). 2012. URL [accessed 16 May 2012].

18. MLIT. Digital national Land Information. Ministry of Land, Infrastructure and Transport, Japan; 2012. URL [accessed 16 May 2012].

19. NIAES. Cultivated soil information system. National Institute for Agro–Environmental Sciences. 2009.

20. Agency, J.M. Japan Meteorological Agency. Japan Meteorological Agency. Japan Meteorological Agency, 2012. URL [accessed 28 May 2012].

21. Tu, L.H.; Boulange, J.; Iwafune, T.; Yadav, I.C.; Watanabe, H. Improvement and application of the PCPF–1@SWAT2012 model for predicting pesticide transport: A case study of the Sakura River watershed. Pest Manage. Sci. 2018, 74, 2520–2529. doi:10.1002/ps.4934.

22. Boulange, J. Development and application of the PCPF–1@SWAT model for simulating the fate and transport of rice pesticides in watersheds containing paddy fields. Tokyo University of Agriculture and Technology. 2013.

23. JPPA . Pesticide database. Japan Plant Protection Association, Tokyo, Japan. 2009.

24. Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)? –Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 20147, 1247–1250.

25. Gassmann, M.; Stamm, C.; Olsson, O.; Lange, J.; Kümmerer, K.; Weiler, M. Model–based estimation of pesticides and transformation products and their export pathways in a headwater catchment. Hydrol. Earth Syst. Sci. 201317, 5213–5228.

26. Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE. 200750, 885–900.

27. Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I – A discussion of principles. J. Hydrol. 197010, 282–290.

28. Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009377, 80–91.

29. Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 19994, 135–143.