Tác giả
Đơn vị công tác
1 Trường Đại học Bách Khoa Tp. HCM; ngoc.le15@hcmut.edu.vn; nguyenduyen91@hcmut.edu.vn; nhphong@dcselab.edu.vn; longbt62@hcmut.edu.vn
2 Đại học Quốc gia Tp. HCM; ngoc.le15@hcmut.edu.vn; nguyenduyen91@hcmut.edu.vn; nhphong@dcselab.edu.vn; longbt62@hcmut.edu.vn
*Tác giả liên hệ: longbt62@hcmut.edu.vn; Tel.: +84–918017376
Tóm tắt
Bình Dương có vai trò quan trọng trong chiến lược phát triển chung, và là một trung tâm kinh tế - xã hội, chính trị, văn hóa, giáo dục của Việt Nam. Cùng với sự phát triển kinh tế vượt bậc, tỉnh Bình Dương đang phải đối mặt với vấn đề suy giảm chất lượng không khí (CLKK), đặc biệt là ô nhiễm PM2.5. Mục tiêu của nghiên cứu là đánh giá những tác động sức khỏe cấp tính do ô nhiễm PM2.5 trong tháng 1/2019 và 7/2019. Để ước tính sự phân bố PM2.5, nghiên cứu đã áp dụng các mô hình khí tượng WRF (Weather Research and Forecast) kết hợp với chất lượng không khí CMAQ (Community Multiscale Air Quality Modeling System) và mô hình thiệt hại sức khỏe để phân tích, định lượng. Tổng số trường hợp ước tính có thể đạt 3.628 ca nhập viện điều trị nội trú và 5.980 ca thăm khám cấp cứu. Khung nghiên cứu này có thể áp dụng cho nhiều địa phương khác ở Việt Nam để đánh giá tác động của ô nhiễm PM2.5. Đồng thời, đây cũng là cơ sở khoa học ban đầu để các cơ quan quản lý đề xuất biện pháp kiểm soát ô nhiễm PM2.5 và xây dựng một Kế hoạch hành động không khí sạch nhằm giảm thiểu tác động tiêu cực đến cộng đồng và đạt được những lợi ích kinh tế cho các mục tiêu phát triển bền vững đến 2030.
Từ khóa
Trích dẫn bài báo
Ngọc, L.T.; Duyên, N.C.M.; Phong, N.H.; Long, B.T. Đánh giá các tác động sức khỏe cộng đồng do phơi nhiễm ngắn hạn ô nhiễm PM2.5: Nghiên cứu điển hình tại tỉnh Bình Dương. Tạp chí Khí tượng Thủy văn 2023, 746, 70-87.
Tài liệu tham khảo
1. Loan, T.T. Policy on Management and Control of Urban Air Quality. Policy Bull. Nat. Resour. Environ. Sustain. Dev. 2017, 24, 6–8.
2. Thang, N.T. Breakthrough reform in air environment policy is needed. Policy Bull. Nat. Resour. Environ. Sustain. Dev. 2017, 24, 3–5.
3. Thuy, N.T.T.; Dung, N.T.; Sekiguchi, K.; Thuy, L.B.; Hien, N.T.T.; Yamaguchi, R. Mass concentrations and Carbonaceous compositions of PM0.1, PM2.5, and PM10 at urban locations in Hanoi, Vietnam. Aerosol Air Qual. Res. 2018, 18(7), 1591–1605.
4. Orru, H.; Ebi, K.L.; Forsberg, B. The interplay of climate change and air pollution on health. Curr. Environ. Heal. Reports. 2017, 4(4), 504–513.
5. Gautam, D.; Bolia, N.B. Air pollution: impact and interventions. Air Qual. Atmos. Heal. 2020, 13(2), 209–223.
6. Gold, D.R.; Samet, J.M. Air pollution, climate, and heart disease. Circulation 2013, 128(21), 411–414.
7. Lin, R.S. et al. Role of urbanization and air pollution in adolescent asthma: a mass screening in Taiwan. J. Formos. Med. Assoc. 2001, 100(10), 649–655.
8. WHO. How air pollution is destroying our health. World Health Organization, 2018.
9. Nhung, N.T.T.; Schindler, C.; Dien, T.M.; Probst-Hensch, N.; Künzli, N. Association of ambient air pollution with lengths of hospital stay for hanoi children with acute lower-respiratory infection, 2007–2016. Environ. Pollut. 2019, 247, 752–762.
10. Nhung, N.T.T.; Schindler, C.; Dien, T.M.; Probst-Hensch, N.; Perez, L.; Künzli, N. Acute effects of ambient air pollution on lower respiratory infections in Hanoi children: An eight-year time series study. Environ. Int. 2018, 110, 139–148.
11. Nhung, N.T.T. et al. Exposure to air pollution and risk of hospitalization for cardiovascular diseases amongst Vietnamese adults: Case-crossover study. Sci. Total. Environ. 2020, 703(1), 134637.
12. Nhung, N.T.T. et al. Mortality Burden due to Exposure to Outdoor Fine Particulate Matter in Hanoi, Vietnam: Health Impact Assessment. Int. J. Public Health. 2022, 67.
13. Health Effects Institute. State of Global Air. Data Source: Global Burden of Disease Study 2019. IHME, 2020.
14. Zhou, M. et al. Cause-specific mortality for 240 causes in China during 1990 – 2013: a systematic subnational analysis for the Global Burden of Disease Study 2013. Lancet 2016, 387(10015), 251–272.
15. Di, Q. et al. Air Pollution and Mortality in the Medicare Population. N. Engl. J. Med. 2017, 376(26), 2513–2522.
16. Di, Q. et al. Association of Short-term Exposure to Air Pollution With Mortality in Older Adults. JAMA, 2017, 318(24), 2446–2456.
17. Wei, Y. et al. Causal Effects of Air Pollution on Mortality Rate in Massachusetts. Am. J. Epidemiol. 2020, 189(11), 1316–1323.
18. Singh, R. et al. The relationship between biomarkers of oxidative DNA damage, polycyclic aromatic hydrocarbon DNA adducts, antioxidant status and genetic susceptibility following exposure to environmental air pollution in humans. Mutat. Res. Mol. Mech. Mutagen. 2007, 620(1), 83–92.
19. Demetriou, C.A. et al. Biomarkers of ambient air pollution and lung cancer: a systematic review. Occup. Environ. Med. 2012, 69(9), 619–627.
20. Dockery, D.W. et al. An Association between Air Pollution and Mortality in Six U.S. Cities. N. Engl. J. Med. 1993, 329(24), 1753–1759.
21. Dominici, F.; McDermott, A.; Daniels, M.; Zeger, S.L.; Samet, J.M. Revised Analyses of the National Morbidity, Mortality, and Air Pollution Study: Mortality Among Residents of 90 Cities. J. Toxicol. Environ. Heal. Part A. 2005, 68(13–14), 1071–1092.
22. Krewski, D. et al. Overview of the Reanalysis of the Harvard Six Cities Study and American Cancer Society Study of Particulate Air Pollution and Mortality. J. Toxicol. Environ. Heal. Part A. 2003, 66(16–19), 1507–1552.
23. Laden, F.; Schwartz, J.; Speizer, F.E.; Dockery, D.W. Reduction in Fine Particulate Air Pollution and Mortality. Am. J. Respir. Crit. Care Med. 2006, 173(6), 667–672.
24. Katsouyanni, K. Aphea Project: Air Pollution and Health: A European Approach. Epidemiology. 2006, 17(6).
25. Chen, L. et al. Assessment of population exposure to PM2.5 for mortality in China and its public health benefit based on BenMAP. Environ. Pollut. 2017, 221, 311–317.
26. Chen, L. et al. Quantifying public health benefits of environmental strategy of PM2.5 air quality management in Beijing–Tianjin–Hebei region, China. J. Environ. Sci. (China). 2017, 57, 33–40.
27. Andreão, W.L.; Albuquerque, T.T.A.; Kumar, P. Excess deaths associated with fine particulate matter in Brazilian cities. Atmos. Environ. 2018, 194, 71–81.
28. Ansari, M.; Ehrampoush, M.H. Meteorological correlates and AirQ+ health risk assessment of ambient fine particulate matter in Tehran, Iran. Environ. Res. 2019, 170, 141–150.
29. Hadei, M. et al. Burden of mortality attributed to PM2.5 exposure in cities of Iran; contribution of short-term pollution peaks. Atmos. Environ. 2020, 224117365, 2020.
30. Yarahmadi, M. et al. Mortality assessment attributed to long-term exposure to fine particles in ambient air of the megacity of Tehran, Iran. Environ. Sci. Pollut. Res. 2018, 25(14), 14254–14262.
31. Altieri, K.E.; Keen, S.L. Public health benefits of reducing exposure to ambient fine particulate matter in South Africa. Sci. Total Environ. 2019, 684, 610–620.
32. Mirzaei, A.; Tahriri, H.; Khorsandi, B. Comparison between AirQ+ and BenMAP-CE in estimating the health benefits of PM2.5 reduction. Air Qual. Atmos. Heal. 2021, 14(6), 807–815.
33. US EPA. BENMAP-CE user manual. US EPA, 2018.
34. Sacks, J.D.; Fann, N.; Gumy, S.; Kim, I.; Ruggeri, G.; Mudu, P. Quantifying the Public Health Benefits of Reducing Air Pollution: Critically Assessing the Features and Capabilities of WHO’s AirQ+ and U.S. EPA’s Environmental Benefits Mapping and Analysis Program - Community Edition (BenMAP - CE). Atmosphere (Basel). 2020, 11(5), 1–15.
35. Khue, V.H.N.; Dung, H.M.; Tam, N.T.; Hang, N.T.T.; Bang, H.Q. Inventory and mapping the air emissions from transportation activities in Ho Chi Minh city. Sci. Technol. Dev. J. - Nat. Sci. 2019, 3(2), 100–114.
36. Bang, H.Q.; Khue, V.H.N.; Tam, N.T.; Hang, N.T.T.; Huong, L.T.V. Method of developing local air quality management plan in current conditions. Environ. Mag. 2021, I(3), 15–20.
37. Nhung, N.T.T. The connection between air pollution and health. Policy Bull. Nat. Resour. - Environ. - Sustain. Dev. 2017, 24, 26–28.
38. Wang, J.; Zhang, L.; Niu, X.; Liu, Z. Effects of PM2.5 on health and economic loss: Evidence from Beijing-Tianjin-Hebei region of China. J. Clean. Prod. 2020, 257, 120605.
39. Fu, X. et al. The economic loss of health effect damages from PM2.5 pollution in the Central Plains Urban Agglomeration. Environ. Sci. Pollut. Res. 2020, 27(20), 25434–25449.
40. Vu, H.N.K. et al. Poor air quality and its association with mortality in Ho Chi Minh city: Case study. Atmosphere 2020, 11(7), 1–20.
41. Vien, N.T. et al. PM2.5 increased respiratory mortality in Ho Chi Minh city: A multi-source data study. J. Med. Res. Hanoi Med. Univ. 2021, 142(6), 108–118.
42. Saisho, T. Promotion of Smart Community Strategy in Vietnam’s Binh Duong Province. M. Ergen, Ed. Rijeka: IntechOpen, 2018, Ch. 7.
43. Binh Duong CEM. Report on the current state of air environment in Binh Duong province in 2018, Thu Dau Mot City, 2019.
44. GSO. National Statistical Yearbook 2019. Statistical Publishing House, Vietnam, Ha Noi Capital, 2019.
45. Binh Duong Statistical Office. Statistical Yearbook of Binh Duong Province in 2020, Thu Dau Mot City, 2021.
46. Department of Statistics Ho Chi Minh City. The Economic of Ho Chi Minh City and Key Economic Region of South Vietnam, Ho Chi Minh City, 2019.
47. Binh Duong CEM. Report on the current state of air environment in Binh Duong province in 2019, Thu Dau Mot City, 2020.
48. Bui, L.T.; Nguyen, P.H.; My Nguyen, D.C. Linking air quality, health, and economic effect models for use in air pollution epidemiology studies with uncertain factors. Atmos. Pollut. Res. 2021, 12(7), 101118.
49. Bui, L.T.; Nguyen, P.H. Ground-level ozone in the Mekong Delta region: precursors, meteorological factors, and regional transport. Environ. Sci. Pollut. Res. 2022.
50. Bui, L.T.; Nguyen, P.H. Evaluation of the annual economic costs associated with PM2.5 based health damage – a case study in Ho Chi Minh City, Vietnam. Air Qual. Atmos. Heal. 2022.
51. Uyen, L.K.; Phong, N.H.; Long, B.T. Risk assessment of hospital admission due to all-cause respiratory and cardiovascular diseases attributed to ground-level O3 short–term exposure in Dong Nai Province. VN J. Hydrometeorol. 2022, 742, 1–18.
52. Nguyen, D.C.M.; Nguyen, P.H.; Bui, L.T. Application of WRF/CMAQ for PM10 simulation from road traffic in Ho Chi Minh city. VN J. Hydrometeorol. 2021, 724(4), 30–45.
53. Saha, S. et al. The NCEP climate forecast system version 2. J. Clim. 2014, 27(6), 2185–2208.
54. Emmons, L.K. et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev. 2010, 3(1), 43–67.
55. Yarwood, G.; Jung, J.; Whitten, G.Z.; Heo, G.; Mellberg, J.; Estes, M. Updates to the Carbon Bond Mechanism for Version 6 (CB6). Present. 9th Annu. C. Conf. Chapel Hill, NC, Oct. 11-13. 2010, 6(415), 1–4.
56. Emery, C.; Jung, J.; Koo, B.; Yarwood, G. Final report: Improvements to CAMx Snow Cover Treatments and Carbon Bond Chemical Mechanism for Winter Ozone Novato, California, USA, 2015. Available Online: http://www.camx.com/files/ udaq_snowchem_final_6aug15.pdf.
57. Luecken, D.J.; Yarwood, G.; Hutzell, W.T. Multipollutant modeling of ozone, reactive nitrogen and HAPs across the continental US with CMAQ-CB6. Atmos. Environ. 2019, 201, 62–72.
58. Tang, Y. et al. Comparison of chemical lateral boundary conditions for air quality predictions over the contiguous United States during pollutant intrusion events. Atmos. Chem. Phys. 2021, 21(4), 2527–2550.
59. Granier, C. et al. The Copernicus Atmosphere Monitoring Service global and regional emissions (April 2019 version), 1–55, 2019.
60. Jiang, F. et al. An ozone episode in the Pearl River Delta: Field observation and model simulation. J. Geophys. Res. Atmos. 2010, 115.
61. Liu, H.; Wang, X.; Zhang, J.; He, K.; Wu, Y.; Xu, J. Emission controls and changes in air quality in Guangzhou during the Asian Games. Atmos. Environ. 2013, 76, 81–93.
62. Wang, N. et al. Assessment of regional air quality resulting from emission control in the Pearl River Delta region, southern China. Sci. Total Environ. 2016, 573, 1554–1565.
63. Morris, R.E.; Mc Nally, D.E.; Tesche, T.W.; Tonnesen, G.; Boylan, J.W.; Brewer, P. Preliminary evaluation of the community multiscale air quality model for 2002 over the Southeastern United States. J. Air Waste Manag. Assoc. 2005, 55(11), 1694–1708.
64. Eder, B.; Yu, S. A performance evaluation of the 2004 release of Models-3 CMAQ. Atmos. Environ. 2006, 40(26), 4811–4824.
65. Xue, T. et al. Rapid improvement of PM2.5 pollution and associated health benefits in China during 2013–2017. Sci. China Earth Sci. 2019, 62(12), 1847–1856.
66. Wang, F. et al. Policy-driven changes in the health risk of PM2.5 and O3 exposure in China during 2013–2018. Sci. Total Environ. 2021, 757, 143775.
67. Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525(7569), 367–371.
68. Shang, Y. et al. Systematic review of Chinese studies of short-term exposure to air pollution and daily mortality. Environ. Int. 2013, 54, 100–111.
69. Ministry of Health. The Health Statistics Yearbook 2018, Ha Noi Capital, 2019.
70. WHO. WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), Ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. 2021.
71. ICD-10. International Statistical Classification of Diseases and Related Health Problems 10th Revision, 2016. Available online: http://apps.who.int/classifications/ icd10/browse/%0A2016/en.
72. Sui, X. et al. The short-term effect of PM2.5/O3 on daily mortality from 2013 to 2018 in Hefei, China. Environ. Geochem. Health. 2021, 43(1), 153–169.
73. Cai, J. et al. Association between PM2.5 exposure and all-cause, non-accidental, accidental, different respiratory diseases, sex and age mortality in Shenzhen, China. Int. J. Environ. Res. Public Health. 2019, 16(3).
74. Kan, H. et al. Differentiating the effects of fine and coarse particles on daily mortality in Shanghai, China. Environ. Int. 2007, 33(3), 376–384.
75. Huang, W. et al. Seasonal variation of chemical species associated with short-term mortality effects of PM2.5 in Xi’an, a central city in China. Am. J. Epidemiol. 2012, 175(6), 556–566.
76. Orellano, P.; Reynoso, J.; Quaranta, N.; Bardach, A.; Ciapponi, A. Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environ. Int. 2020, 142, 105876.
77. Nascimento, A.P.; Santos, J.M.; Mill, J.G.; de Souza, J.B.; Júnior, N.C.R.; Reisen, V.A. Association between the concentration of fine particles in the atmosphere and acute respiratory diseases in children. Rev. Saude Publica. 2017, 51(1), 1–10.
78. Chen, C. et al. Short-term exposures to PM2.5 and cause-specific mortality of cardiovascular health in China. Environ. Res. 2018, 161(7), 188–194.
79. Qu, Y. et al. Short-term effects of fine particulate matter on non-accidental and circulatory diseases mortality: A time series study among the elder in Changchun. PLoS One. 2018, 13(12), 1–12.
80. Ferreira, T.M.; Forti, M.C.; de Freitas, C.U.; Nascimento, F.P.; Junger, W.L.; Gouveia, N. Effects of particulate matter and its chemical constituents on elderly hospital admissions due to circulatory and respiratory diseases. Int. J. Environ. Res. Public Health. 2016, 13(10), 1–11.
81. Madaniyazi, L.; Nagashima, T.; Guo, Y.; Pan, X.; Tong, S. Projecting ozone-related mortality in East China. Environ. Int. 2016, 92–93, 165–172.
82. Pothirat, C. et al. Acute effects of air pollutants on daily mortality and hospitalizations due to cardiovascular and respiratory diseases. J. Thorac. Dis. 2019, 11(7), 3070–3083.
83. GSO. Completed results of the 2019 Vietnam population and housing census, Ha Noi Capital, 2020.