Tác giả

Đơn vị công tác

1 Bộ môn Trắc địa bản đồ và GIS, Viện Quản lý đất đai và PTNT, Trường Đại học Lâm nghiệp; dinh.vuxuan@gmail.com

*Tác giả liên hệ: dinh.vuxuan@gmail.com; Tel.: +84–989640422

Tóm tắt

Nghiên cứu này tập trung phát triển một hệ thống tự động giám sát diễn biến lớp phủ rừng tại Việt Nam thông qua nền tảng Google Earth Engine (GEE) và các chỉ số thực vật thông dụng. Trước bối cảnh mất rừng và biến đổi khí hậu đang gia tăng, hệ thống này cung cấp giải pháp nhanh chóng, chính xác, và hiệu quả về chi phí trong việc theo dõi biến động rừng mà không đòi hỏi đầu tư lớn vào cơ sở hạ tầng. Các chỉ số NDVI, EVI, SAVI, NDWI, NBRI, GCI, và BSI được áp dụng để đánh giá sức khỏe và mức độ che phủ của rừng. Nghiên cứu nhấn mạnh vai trò quan trọng của công nghệ viễn thám trong giám sát biến động lớp phủ rừng, tận dụng dữ liệu vệ tinh để phân tích các biến động về diện tích và tình trạng sức khỏe hệ sinh thái. Nền tảng GEE, với khả năng xử lý quy mô lớn, cho phép phân tích diện rộng và phát hiện sớm các hiện tượng như phá rừng, cháy rừng, hoặc suy thoái rừng. Hệ thống này đóng vai trò hỗ trợ quan trọng trong việc ra quyết định quản lý và bảo tồn rừng bền vững, đồng thời tự động hóa quy trình theo dõi, góp phần nâng cao hiệu quả quản lý tài nguyên và bảo vệ đa dạng sinh học.

Từ khóa

Trích dẫn bài báo

Định, V.X. Ứng dụng Google Earth Engine trong phát triển hệ thống giám sát biến động lớp phủ rừng Việt Nam. Tạp chí Khí tượng Thủy văn 2025, 772, 51-66.

Tài liệu tham khảo

1. Sodhi, N.S.; Brook, B.W.; Bradshaw, C.J.A. Southeast Asian biodiversity conservation. Trends Ecol. Evol. 2004, 19(12), 654–660.

2. General Department of Forestry, M.o.A. and R. Development, Vietnam forestry statistics. Hanoi: General Department of Forestry, 2020.

3. Nguyen, T.V.; McElwee, P.D. Forest cover change in Vietnam: A historical review and implications for future policies. Land Use Policy 2020, 97, 104693.

4. Food and A. Organization. Global forest resources assessment. Rome: FAO, 2020.

5. Hansen, M.C.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342(6160), 850-853.

6. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenke, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27.

7. Nguyen, Q.; Hoang, T.L.; Vu, N.C. Applications of remote sensing for forest monitoring in Vietnam using Google Earth Engine. Forests 2020, 11(8), 822.

8. Asner, G.P.; et al. The importance of remote sensing for forest conservation. Nat. Commun. 2021, 12(1), 6956.

9. Huete, A.R.; Liu, H.Q.; Batchily, K.; van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59(3), 440–451.

10. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deerling, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS, in Third Earth Resources Technology Satellite-1 Symposium. NASA SP-351, 1974, pp. 309–317.

11. Geography, G.I.S. What is NDVI (Normalized Difference Vegetation Index), 2015.

12. Vélez, S.; Martínez-Peña, R.; Castrillo, D. Beyond vegetation: A review unveiling additional insights into agriculture and forestry through the application of vegetation indices. J. Agric. For. Res. 2023, 6(3), 421–436.

13. Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25(3), 295–309.

14. Key, C.H.; Benson, N.C. Landscape assessment: Remote sensing of severity, the normalized burn ratio. FIREMON: Fire Effects Monitoring and Inventory System. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2006.

15. McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17(7), 1425–1432.

16. Gitelson, A.A.; Gritz, U.; Merzlyak,  M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160(3), 271–282.

17. Rikimaru, A.; Roy, P.S.; Miyatake, S. Tropical forest cover density mapping. Tropical Ecology 2002, 43(1), 39–47.

18. Pettorelli, N.; Laurance, W.F.; O'Brien, T.G.; Wegmann, M.; Nagendra, H.;  Turner, W. Satellite remote sensing for applied ecologists: opportunities and challenges. J. Appl. Ecol. 2016, 53(4), 859–864.

19. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 2019, 12(1), 1001–1006.

20. Xu, C.; et al. NDVI-based vegetation changes and their responses to climate change in the northern forests of China. Forests 2017, 8(6), 200.

21. Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2019, 159, 269–277.

22. Huang, X.; Liu, Y.; Zhang,  M. Spatiotemporal dynamics of forest disturbance and recovery derived from Landsat time series in subtropical China. Remote Sens. Environ. 2020, 12(2), 233.

23. Fensholt, R.; Proud, S.R.; Mbow, C. Evaluation of earth observation based global long-term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2015, 159, 104–123.

24. Huete, A.R.; Didan, K.; Miura, T. Overview of the Enhanced Vegetation Index (EVI): Contributions and improvements to vegetation monitoring. Remote Sens. Environ.  2016, 182, 231–245.

25. Sims, D.A.; Rahman, A.F. Tropical forest monitoring with enhanced vegetation indices. Ecol. Appl. 2017, 27(6), 1833–1847.

26. Didan, K.; Huete, A.R. MODIS vegetation index products: Updates and lessons learned. Remote Sens. Environ. 2018, 221, 3–22.

27. Morton, D.C.; Defries, R.S.; Randerson, J.T. Agricultural intensification increases deforestation fire activity in Amazon forests. Global Environ. Change 2019, 55, 1–12.

28. Zhang, Y.; Xu, B.; Wang, W. Monitoring forest health using remote sensing data with enhanced vegetation index. Environ. Monit. Assess. 2020, 192(9), 606.

29. Huete, A.R.; Didan, K.; Miura, T. A revised soil-adjusted vegetation index (SAVI) and its application to vegetation monitoring. Remote Sens. Environ. 2015, 174, 143–153.

30. Xu, D.; Chen, Q.; Du, J. Impact of soil reflectance on the performance of vegetation indices: A comparison study in arid regions. Ecol. Indic. 2016, 63, 1–9.

31. Zhang, C.; Liu, X.;  He, H. Assessing deforestation and forest degradation using soil-adjusted vegetation indices in dry forest ecosystems. For. Ecol. Manage. 2017, 404, 13–22.

32. Chen, X.; Zhao, Y.; Sun, J. Application of SAVI in forest degradation and regeneration assessment in semi-arid areas. J. Arid. Environ. 2018, 152, 98–110.

33. Jiang, Z.; Xiao, X.; Wang, Y. Soil-adjusted vegetation indices for improving forest health assessments under high soil visibility. Remote Sens. 2019, 11(5), 582.

34. Wang, L.;  Zhou, L.;  Liu, Z. Monitoring post-fire forest recovery using SAVI and other vegetation indices: A case study in boreal forest regions. Forests 2020, 11(6), 629.

35. Huang, Y.; Wang,Y.; Chen, J. Utilizing SAVI for forest management in sensitive regions. Enviro. Res. 2020, 188, 109.

36. Gao, B.C. NDWI: A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 2015, 101, 375–382.

37. Gu, Y.; et al. A five-year analysis of the NDWI for drought monitoring in the central United States. Remote Sens. 2017, 9(4), 303.

38. Makamura, Y.; Xu, H. Application of NDWI for forest water stress monitoring. Ecol. Indic. 2018, 85, 1–9.

39. Chen, J.; Huang, Y.; Wu, J. Using NDWI and other indices to assess forest drought stress. J. Hydrol. 2016, 535, 222–233.

40. Zhou, Y.; Liu, X.; Zhang, Z. Monitoring forest health using NDWI: A case study in subtropical forests. Remote Sens. Enviro. 2019, 226, 216–224.

41. Li, W.; Zhang, H.; Li, Y. NDWI application in wetland and forest water stress assessment: A comparative study. For. Ecol. Manage. 2020, 456, 117666.

42. Wang, L.; Zhou, L.; Liu, Z. NDWI in forest management: A global perspective on forest water stress monitoring. Forests 2021, 12(5), 501.

43. Key, C.H.; Benson, N.C. Landscape assessment: Ground measure of severity, the composite burn index; and remote sensing of severity, the normalized burn ratio. Fire Effects Monit. Inventory Syst. 2006, LA1–LA51.

44. Holden, Z.A.; Morgan, P.; Crimmins, M.A.; Steinhorst, R.K.; Smith, A.M.S. Fire season precipitation variability influences fire extent and severity in a large southwestern wilderness area, USA. Geophys. Res. Lett. 2015, 42(14), 5213–5221.

45. García-Lázaro, J.R.; et al. Burn severity patterns of large fires in response to pre-fire fuel and weather in Mediterranean pine ecosystems. Sci. Total Environ. 2018, 624,  424–437.

46. Pham, T.D.; Nguyen,  H.V. Forest fire monitoring and management in Vietnam using remote sensing and GIS. For. Ecol. Manage. 2020, 477, 118481.

47. Doan, H.Q.; Tran, Q.D. The effects of forest fire on tropical forest ecosystems in Vietnam. Int. J. Wildland Fire 2019, 28(5), 340–349.

48. Roberts, D.A.; Quayle, B.; Borchert,  J. Use of remote sensing to assess the impacts of large fires on forest restoration. Ecological Restoration 2019, 37(3), 183–195.

49. Chuvieco, E.; Pettinari, M.L.; Ramo, C.C. Generation and analysis of burn severity maps for a southern European country using Landsat and Sentinel-2 data. Remote Sens. 2016, 8(5), 340.

50. Rodríguez-Galiano, V.F.; Pascual, J.; Martín, M.P. Burned area mapping and post-fire severity assessment using satellite imagery and machine learning in fire-prone ecosystems. Remote Sens. Environ. 2021, 264, 112571.

51. Sims, D.A.; Gamon, J.A. Relationship between chlorophyll content and vegetation indices: implications for photosynthetic efficiency across vegetation types. Remote Sens. Environ. 2016, 187, 120–134.

52. Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74(6), 229–239.

53. Tucker, C.J.; Sellers, P.J. Satellite remote sensing of primary production. Int. J. Remote Sens. 2015, 36(5), 1540–1560.

54. Smith, M.O.; Black, A. Reflectance of dense vegetation at near-infrared wavelengths. IEEE Trans. Geosci. Remote Sens. 2018, 56(2), 233–243.

55. Jones, M.O.; Kimball, J.S.; Reichle, R.H. Satellite monitoring of vegetation response to drought. Agric. For. Meteorol. 2019, 265, 146–159.

56. Chen, B.; Xiao, X.; Zhang, Y. Using Landsat images to monitor post-fire forest recovery dynamics. Ecol. Appl. 2020, 30(2), e02052.

57. Wang, Y.; Ma, L.; Li, X. Effects of climate change on forest ecosystems and vegetation index trends. J. Environ. Manage. 2021, 278, 111591.

58. Kross, A.; Murdie, T.; Gomez, C. Evaluating GCI for sustainable forest management. Can. J. Remote Sens. 2018, 44(3), 266–278.

59. Rahman, M.M.; Shi, Z.; Chongfa, C. Soil degradation monitoring with remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 38–48.

60. DeFries, R.; Hansen, A.; Turner, B.L. Land use change: Impacts on soil and biodiversity. Annu. Rev. Environ. Resour. 2015, 40, 235–258.

61. Phan, L.D.; Vu, T.A.; Bui, Q.T. Forest cover loss and agricultural expansion in Vietnam: Impacts of economic activities on land degradation. For. Policy Econ. 2020, 115, 102138.

62. Sun, Q.; Cheng, W.; Liu, X. Desertification monitoring using BSI and other remote sensing indices. Environ. Monit. Assess. 2019, 191(4), 220.

63. Tran, H.T.; Nguyen, Q.D. Assessing BSI for forest management in tropical regions. J. For. Res. 2021, 32(2), 353–367.

64. Li, F.; Lu, C.; Yang, X. Application of BSI in forest cover and land degradation monitoring. Land Degrad. Dev. 2018, 29(5), 1337–1349.

65. Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote sens. Environ. 2012, 118, 83–94.

66. Cohen, W.B.; Goward, S.N. Landsat's role in ecological applications of remote sensing. Bioscience 2004, 54(6), 535–545.

67. Woodcock, C.E.; Strahler, A.H. The factor of scale in remote sensing. Remote Sens. Environ. 1987, 21(3), 311–332.

68. Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr – Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114(12), 2897–2910.

69. Roy, D.P.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172.

70. Nguyen, H.T.; Tran, M.T.; Le, Q.P. Application of NDVI in monitoring forest cover changes in the Central Highlands of Vietnam. J. Sci. Technol. 2018, 56(2), 12–19.

71. Phan, T.H.; Vo, N.A. The use of remote sensing and NDVI to monitor forest ecosystems in Vietnam. VN J. For. Res. 2015, 24(3), 22–30.

72. Hoang, L.V.; Le, V.T.; Nguyen, A.H. Enhanced vegetation index (EVI) application in forest monitoring in tropical areas of Vietnam. J. Environ. Sci. 2017, 61(4), 55–67.

73. Le, M.T.; Pham, V.C.; Tran, Q.H. Soil-adjusted vegetation index (SAVI) in vegetation classification and monitoring in Northern Vietnam. VN Acad. Agric. Sci. 2016, 49(1), 10–18.

74. Tran, Q.T.; Le, T.V.; Hoang, P.D. NDWI and MNDWI in monitoring water bodies and forested wetland areas in the Mekong Delta, Vietnam. VN J. Hydrometeorol. 2019, 75(2), 43–52.

75. Xu, H. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27(14), 3025–3033.

76. Key, C.H.; Benson, N.C. Landscape Assessment: Remote sensing of severity, the Normalized Burn Ratio; and ground measure of severity, the Composite Burn Index.

77. FIREMON: Fire Effects Monitoring and Inventory System. USDA Forest Service, 2006.

78. López García, M.J.; Caselles, V. Mapping burns and natural reforestation using Thematic Mapper data. Geocarto Int. 1991, 6(1), 31–37.

79. Gitelson, A.A.; Vin˜, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32(8), L08403.

80. Wu, Y.; et al. Evaluation of GCI index in monitoring forest health status using remote sensing data. Remote Sens. 2020, 12(14).

81. Jamalabad, V.P.; Abkar, A.A. Forest canopy density monitoring using satellite images. Geocarto Int. 2004, 19(2), 21–24.