1. Chen, Y.; Xia, J.; Liang, S.; Feng, J.; Fisher, J.B.; Li, X.; ...Yuan, W. Comparison of satellite–based evapotranspiration models over terrestrial ecosystems in China. Remote Sens. Environ. 2014, 140, 279–293.
2. Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; ... Zhang, K. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467(7318), 951–954.
3. Tan, L.; Zheng, K.; Zhao, Q.; Wu, Y. Evapotranspiration Estimation Using Remote Sensing Technology Based on a SEBAL Model in the Upper Reaches of the Huaihe River Basin. Atmosphere 2021, 12(12), 1599.
4. Hadjimitsis, D.G.; Papadavid, G. Remote sensing for determining evapotranspiration and irrigation demand for annual crops. Remote Sens. Environ: Integr. Approaches 2013, 25.
5. Li, C.; Li, Z.; Gao, Z.; Sun, B. Estimation of evapotranspiration in sparse vegetation areas by applying an optimized two–source model. Remote Sens. 2021, 13(7), 1344.
6. Li, Z.L.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B.; ... Zhang, X. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors 2009, 9(05), 3801–3853.
7. Saadi, S.; Boulet, G.; Bahir, M.; Brut, A.; Delogu, É.; Fanise, P.; Simonneaux, V.; Chabaane, Z.L. Assessment of actual evapotranspiration over a semiarid heterogeneous land surface by means of coupled low–resolution remote sensing data with an energy balance model: comparison to extra–large aperture scintillometer measurements. Hydrol. Earth Syst. Sci. 2018, 22(4), 2187–2209.
8. Cổng thông tin điện tử tỉnh Sóc Trăng. https://soctrang.gov.vn/.
9. Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; Koetz, B. Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery. Remote Sens. 2015, 7(9), 12356–12379.
10. JICA. Nghiên Cứu Phát Triển Và Quản Lý Tài Nguyên Nước Trên Toàn Quốc Tại nước Cộng hòa Xã hội chủ nghĩa Việt Nam, Báo cáo cuối cùng, 2013.
11. ICEM. Strategic Environmental Impact Assessment for Hydropower on the Mekong Mainstream. Final Report, prepared for the Mekong River Commission, Hanoi, 2010.
Omran, M.G.H.; Engelbrecht, A.P.; Salman, A. Differential Evolution Methods for Unsupervised Image Classification. IEEE Congr. Evol. Comput. 2005, 2(2), 966–973. https://doi.org/10.1109/CEC.2005.1554795.
12. Unsupervised Classification. 2019.
http://gsp.humboldt.edu/OLM/Courses/GSP_216_Online/lesson6-1/unsupervised.html.
13. Chang, Z.; Du, Z.; Zhang, F.; Huang, F.; Chen, J.; Li, W.; Guo, Z. Landslide susceptibility prediction based on remote sensing images and GIS: Comparisons of supervised and unsupervised machine learning models. Remote Sens. 2020, 12(3), 502.
14. Tuấn, L.A. Giáo trình Hệ thống tưới – tiêu. Viện Nghiên cứu Biến Đổi Khí Hậu – Đại học Cần Thơ, 2009.