Tác giả

Đơn vị công tác

1 Viện Địa chất và Địa vật lý biển, Viện Hàn lâm Khoa học và Công nghệ Việt Nam; vuhaidang@hotmail.com; dothuc.vn@gmail.com

2 Viện Khoa học Khí tượng Thủy văn và Biến đổi khí hậu; thanhnt.met@gmail.com; phamvantienbn@gmail.com

3 Trung tâm Dự báo Khí tượng Thủy văn Quốc gia; thuybanguyen@gmail.com

*Tác giả liên hệ: thanhnt.met@gmail.com; Tel.: +84–974042757

Tóm tắt

Tương tác đại dương–khí quyển ảnh hưởng rất lớn đến sự hình thành và phát triển của bão thông qua việc cung cấp năng lượng cho bão dưới dạng thông lượng hiển nhiệt và ẩn nhiệt. Nhằm nghiên cứu ảnh hưởng tương tác đại dương–khí quyển đến mô phỏng bão trên khu vực Biển Đông, nghiên cứu tiến hành mô phỏng cơn bão Conson (2021) và siêu bão Noru (2022) bằng mô hình kết hợp WRF và 3DPWP. Kết quả nghiên cứu cho thấy tương tác đại dương–khí quyển làm giảm đáng kể SST tại khu vực tâm bão, dẫn đến giảm cường độ bão khi so sánh với trường hợp không tính đến tương tác đại dương–khí quyển. Kết hợp mô hình WRF và mô hình 3DPWP làm làm giảm sai số mô phỏng cường độ ở cơn bão Conson từ 1–2,4 m/s nhưng làm tăng sai số mô phỏng cường độ bão ở cơn bão Noru từ 1–4 m/s khi so sánh với trường hợp sử dụng mô hình WRF riêng lẻ. Việc đưa hiệu ứng tương tác đại dương khí quyển vào mô hình WRF cải thiện sai số trung bình khoảng cách khoảng 42 km ở hạn dự báo đến 30 giờ đối với cơn bão Conson, tuy nhiên gia tăng sai số trung bình khoảng cách đến 50 km đối với cơn bão Noru do làm lệch hướng của quỹ đạo hoặc làm bão di chuyển chậm hơn so với trường hợp không tính đến tương tác đại dương–khí quyển.

Từ khóa

Trích dẫn bài báo

Đăng, V.H.; Thanh, N.T.; Tiền, P..V.; Thủy, N.B.; Thực, Đ.N. Nghiên cứu ảnh hưởng tương tác đại dương–khí quyển trong mô phỏng bão trên khu vực Biển Đông. Tạp chí Khí tượng Thủy văn 2022, 743, 84-95. 

Tài liệu tham khảo

1. IMHEN và UNDP. Báo cáo đặc biệt của Việt Nam về Quản lý rủi ro thiên tai và hiện tượng cực đoan nhằm thúc đẩy thích ứng với biến đổi khí hậu. NXB Tài Nguyên – Môi trường và Bản đồ Việt Nam, 2015.
2. Krishnamurti, T.N.; Kishtawal, C.M.; LaRow, T.E.; Bachiochi, D.R.; Zhang, Z.; Williford, C.E; Gadgil, S.; Surendran, S. Improved weather and seasonal climateforecasts from multimodel superensemble. Science 1999, 285, 1548–1550.
3. McAdie, C.J.; Lawrence, M.B. Improvements in tropical cyclone track forecasting in the Atlantic basin, 1970–98. Bull. Am. Meteorol. Soc. 2000, 81, 989–997.
4. Montgomery, M.T.; Smith, R.K. Recent developments in the fuid dynamics of tropical cyclones. Annu. Rev. Fluid. Mech. 2017, 49, 541–574.
5. DeMaria, M.; Sampson, C.R.; Knaff, J.A.; Musgrave, K.D. Is tropical cyclone intensity guidance improving? Bull. Am. Meteorol. Soc. 2014, 95(3), 387–398.
6. Cangialosi, J.P.; Blake, E.; DeMaria, M.; Penny, A.; Latto, A.; Rappaport, E.;Tallapragada, V. Recent progress in tropical cyclone intensity forecasting at the National Hurricane Center. Weather Forecasting 2020, 35, 1913–1922.
7. Emanuel, K.A. Thermodynamic control of hurricane intensity. Nature 1999, 401(6754), 665–669.
8. Kaplan, J.; Rozoff, C.M.; DeMaria, M.; Sampson, C.R.; Kossin, J.P.; Velden, C.S.; et al. Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Weather Forecasting 2015, 30(5), 1374–1396.
9. Price, J.F. Upper ocean response to a hurricane.J. Phys. Oceanogr. 1981, 11, 153–175.
10. Wang, Z.Q.; Duan, A.M. A New Ocean Mixed–Layer Model Coupled into WRF. Atmos. Oceanic Sci. Lett. 2012, 5(3), 170–175.
11. Schade, L.R.; Emanuel, K.A. The Ocean’s Effect on the Intensity of Tropical Cyclones: Results from a Simple Coupled Atmosphere–Ocean Model. J. Atmos. Sci. 1999, 56, 642–651.
12. Vissa, N.K.; Satyanarayana, A.N.V.; Kumar, B.P. Response of upper ocean and impact of barrier layer on Sidr cyclone induced sea surface cooling. Ocean Sci. J. 2013, 48(3), 279–288.
13. Lin, I.I.; Wu, C.C.; Pun, I.F.; Ko, D.S. Upper‑ocean thermal structure and the Western North Pacifc category 5 typhoons. Part I: ocean features and the category 5 typhoons’ intensifcation. Mon. Weather Rev. 2008, 136, 3288–3306.
14. Baranowski, D.; Flatau, P.; Chen, S.; Black, P. Upper ocean response to thepassage of two sequential typhoons. Ocean Sci. 2014, 10, 559–570.
15. Wu, R.; Li, C.Upper ocean response to the passage of two sequentialtyphoons. Deep Sea Research Part I: Oceanographic Research Papers 2018, 132, 68–79.
16. Wu, C.C.; Tu, W.T.; Pun, I.F.; Lin, I.I.; Peng, M.S. Tropical cyclone–ocean interaction in Typhoon Megi (2010), a synergy study based on ITOP observations and atmosphere–ocean coupled model simulations. J. Geophys. Res.: Atmos. 2016, 121(1), 153–167.
17. Pollard, R.T.; Rhines, P.B.; Thompson, R.Y. The deepening of the wind–mixed layer.Geophys. Fluid. Dyn. 1973, 3, 381–404.
18. Yablonsky, R.M.; Ginis, I. Limitation of one–dimensional ocean models for coupled hurricane–ocean model forecasts.Mon.Weather Rev. 2009, 137, 4410–4419.
19. Mohan, G.M.; Srinivas, C.V.; Naidu, C.V.; Baskaran, R.; Venkatraman, B. Real–time numerical simulation of tropical cyclone Nilam with WRF: experiments with different initial conditions, 3D–Var and Ocean Mixed Layer Model. Nat. Hazards 2015, 77, 597–624.
20. Price, J.F.; Weller, R.A.; Pinkel, R. Diurnal cycling: Observations and models of theupper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res. 1986, 91, 8411–8427.
21. Price, J.F.; Sanford, T.B.; Forristall, G.Z. Observations and simulations of the forced response to moving hurricanes. J. Phys. Oceanogr. 1994, 24, 233–260.
22. Lee, C.;Chen, S. Stable boundary layer and its impact on tropical cyclone structure in a coupled atmosphere–ocean model.Mon. Weather Rev. 2014, 142, 1927–1944.
23. Srinivas, C.V.; Mohan, G.M.; Naidu, C.V.; Baskaran, R.; Venkatraman, B. Impact of Air–Sea coupling on the simulation of Tropical Cyclones in the North Indian Ocean using a simple 3D–Ocean model coupled to ARW: Impact of Air–Sea coupling on Cyclones. J. Geophys. Res. Atmos. 2016, 121(16), 9400–9421.
24. Bao, J.W.; Wilczak, J.M.; Choi, J.K.; Kantha, L.H. Numerical simulations of sea–air interaction under high wind conditions using a coupled model: A study of hurricane development.Mon. Wea. Rev. 2000, 128, 2190–2210.
25. Jiang, X.; Zhong, Z.; Liu, C. The Effect of Typhoon–Induced SST Cooling on Typhoon Intensity: The Case of Typhoon Chanchu (2006). Adv. Atmos. Sci. 2008, 25(6), 1062–1072.
26. Perrie, W.; Ren, X.; Zhang, W.; Long, Z. Simulation of extratropical hurricane Gustav using a coupled atmosphere ocean sea spray model. Geophys. Res. Lett. 2004, 31, L03110. Doi:10.1029/2003GL 018571.
27. Tiến, T.T. Xây dựng công nghệ dự báo liên hoàn bão, nước dâng và sóng ở Việt Nam bằng mô hình số với thời gian dự báo trước 3 ngày. Báo cáo tổng kết Đề tài NCKH cấp Nhà nước thuộc Chương trình “Khoa học và công nghệ phục vụ phòng tránh thiên tai, bảo vệ môi trường và sử dụng hợp lý tài nguyên thiên nhiên”, MS: KC.08.05/06–10, 2010.
28. Cường, H.Đ. Nghiên cứu ứng dụng mô hình WRF phục vụ dự báo thời tiết và bão ở Việt Nam. Báo cáo tổng kết đề tài NCKH cấp Bộ, 2011.
29. Thompson, G.; Paul, R.F.; Roy, M.R.; William, D.H. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Wea. Rev. 2008, 136, 5095–5115.
30. Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor. 2004, 43, 170–181.
31. Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103.
32. Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev. 2006, 134, 2318–2341.
33. Digital Typhoon: Typhoon Images and Information. Avaliable online: http://agora.ex. nii.ac.jp/ digital-typhoon/.
34. Du, T.D.; Ngo–Duc, T.; Hoang, M.T.; Kieu, C.Q. A Study of Connection between Tropical Cyclone Track and Intensity Errors in the WRF Model. Meteo. Atmos. Phys. 2013, 122, 55–64.