1. Chalkias, C.; Ferentinou, M.; Polykretis, C. GIS-Based landslide susceptibility mapping on the peloponnese peninsula, Greece. Geosciences 2014, 4, 176–190. https://doi.org/10.3390/geosciences4030176.
2. Hamid, B.; Massinissa, B.; Nabila, G. Landslide susceptibility mapping using GIS-based statistical and machine learning modeling in the city of Sidi Abdellah, Northern Algeria. Model. Earth Syst. Environ. 2023, 9, 2477–2500. https://doi.org/10.1007/s40808-022-01633-x.
3. Asmare, D.; Terefe, C.; Zewdie, M. A GIS-based landslide susceptibility assessment and mapping around the Aba Libanos area, Northwestern Ethiopia. Appl. Geomatics. 2023, 15, 265–280. https://doi.org/10.1007/s12518-023-00499-7.
4. Tân, N.T.; Trường, N.H.; Vững, Đ.V. Ứng dụng GIS và phương pháp chỉ số thống kê trong xây dựng bản đồ nhạy cảm trượt lở đất khu vực thành phố Bắc Kạn. Tạp chí Khoa học và Công nghệ Thủy lợi 2020, 62, 1–12.
5. Nhật, N.V.; Trí, Đ.Q.; Tuyết, Q.T.T.; Hiền, T.D. Nghiên cứu ứng dụng mô hình TRIGRS mô phỏng trượt lở khu vực Lào Cai, Việt Nam. Tạp chí Khí tượng Thuỷ văn 2022, 742, 65–74.
6. Thành, Đ.C.; Bình, P.T.; Đảm, N.Đ. Ứng dụng mô hình trọng số dẫn chứng (WOE) trong xây dựng bản đồ nguy cơ sạt lở tại tỉnh Quảng Nam. Tạp chí Khoa học Công nghệ Xây dựng 2022, 16, 139–152. doi:10.31814/stce.huce(nuce)2022-16(2V)-12.
7. Agboola, G.; Beni, L.H.; Elbayoumi, T.; Thompson, G. Optimizing landslide susceptibility mapping using machine learning and geospatial techniques. Ecol. Inf. 2024, 81, 102583. https://doi.org/10.1016/j.ecoinf.2024.102583.
8. Xu, Q.; Yordanov, V.; Amici, L.; Brovelli, M.A. Landslide susceptibility mapping using ensemble machine learning methods: a case study in Lombardy, Northern Italy. Int. J. Digital Earth 2024, 17, 2346263. doi:10.1080/17538947.2024.2346263.
9. Yilmaz, I. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ. Earth Sci. 2010, 61, 821–836. https://doi.org/10.1007/s12665-009-0394-9.
10. Adnan, M.S.G.; Rahman, M.S.; Ahmed, N.; Ahmed, B.; Rabbi, M.F.; Rahman, R.M. Improving spatial agreement in machine learning-based landslide susceptibility mapping. Remote Sens. 2020, 12(20), 3347. https://doi.org/10.3390/rs12203347.
11. Chang, Z.; Catani, F.; Huang, F.; Liu, G.; Meena, S.R.; Huang, J.; Zhou, C. Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors. J. Rock Mech. Geotech. Eng. 2022, 15(5), 1127–1143. https://doi.org/10.1016/J.JRMGE.2022.07.009.
12. Zhao, Z.; Liu, Z.Y.; Xu, C. Slope unit-based landslide susceptibility mapping using certainty factor, support vector machine, random forest, CF-SVM and CF-RF models. Front. Earth Sci. 2021, 9. https://doi.org/10.3389/feart.2021.589630.
13. Trang thông tin huyện Bù Đăng, tỉnh Bình Phước. Giới thiệu sơ lượt về diện tích và lịch sử huyện Bù Đăng. Huyện Bù Đăng - Bình Phước. 2024. Trực tuyến: https://budang.binhphuoc.gov.vn/vi/about/Gioi-thieu-so-luot-ve-dien-tich-va-lich-su-huyen-Bu-Dang.html (Cập nhật 6/10/2024).
14. Cục thống kê tỉnh Bình Phước. Niên giám thống kê tỉnh Bình Phước 2022. Bình Phước : Cổng thông tin điện tử. 2023. Trực tuyến: https://binhphuoc.gov.vn/vi/ctk/an-pham-thong-ke/nien-giam-thong-ke-tinh-binh-phuoc-2022-598.html (Cập nhật 6/10/2024).
15. Funk, C.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data. 2015, 2, 150066. https://doi.org/10.1038/sdata.2015.66.
16. Wubalem, A. Landslide susceptibility mapping using statistical methods in Uatzau catchment area, northwestern Ethiopia. Geoenviron. Disasters 2021, 8, 1. https://doi.org/10.1186/s40677-020-00170-y.
17. Meten, M.; Bhandary, N.P.; Yatabe, R. GIS-based frequency ratio and logistic regression modelling for landslide susceptibility mapping of Debre Sina area in central Ethiopia. J. Mt. Sci. 2015, 12, 1355–1372. doi:10.1007/s11629-015-3464-3.
18. Roy, J.; Saha, S. Landslide susceptibility mapping using knowledge driven statistical models in Darjeeling District, West Bengal, India. Geoenviron. Disasters. 2019, 6, 11. https://doi.org/10.1186/s40677-019-0126-8.
19. Wang, Q.; Li, W.; Chen, W.; Bai, H. GIS-based assessment of landslide susceptibility using certainty factor and index of entropy models for the Qianyang County of Baoji city, China. J. Earth Syst. Sci. 2015, 124, 1399–1415. https://doi.org/10.1007/s12040-015-0624-3.
20. Dragićević, S.; Lai, T.; Balram, S. GIS-based multicriteria evaluation with multiscale analysis to characterize urban landslide susceptibility in data-scarce environments. Habitat Int. 2015, 45, 114–125. https://doi.org/10.1016/j.habitatint.2014.06.031.
21. Chen, W.; Pourghasemi, H.R.; Kornejady, A.; Zhang, N. Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma 2017, 305, 314–327. doi:10.1016/j.geoderma.2017.06.020.
22. Achour, Y.; Boumezbeur, A.; Hadji, R.; Chouabbi, A.; Cavaleiro, V.; Bendaoud, E.A. Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arab. J. Geosci. 2017, 10, 94. https://doi.org/10.1007/s12517-017-2980-6.
23. Fransen, P.J.B.; Phillips, C.J.; Fahey, B.D. Forest road erosion in New Zealand: Overview. Earth Surf. Processes Landforms 2001, 26, 165–174.
24. Wu, Y.; Li, W.; Liu, P.; Bai, H.; Wang, Q.; He, J.; Liu, Y.; Sun, S. Application of analytic hierarchy process model for landslide susceptibility mapping in the Gangu County, Gansu Province, China. Environ Earth Sci. 2016, 75, 422. https://doi.org/10.1007/s12665-015-5194-9.
25. Guri, P.K.; Champati, P.K.; Patel, R.C. Spatial prediction of landslide susceptibility in parts of Garhwal Himalaya, India, using the weight of evidence modelling. Environ. Monit. Assess. 2015, 187, 324. https://doi.org/10.1007/s10661-015-4535-1.
26. Jebur, M.N.; Pradhan, B.; Tehrany, M.S. Manifestation of LiDAR-derived parameters in the spatial prediction of landslides using novel ensemble evidential belief functions and support vector machine models in GIS. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 674–690. doi:10.1109/JSTARS.2014.2341276.
27. Guo, Z.; Tian, B.; Li, G.; Huang, D.; Zeng, T.; He, J.; Song, D. Landslide susceptibility mapping in the Loess Plateau of northwest China using three data-driven techniques-a case study from middle Yellow River catchment. Front. Earth Sci. 2023, 10. https://doi.org/10.3389/feart.2022.1033085.
28. Wilson, J.P.; Gallant, J.C. Terrain analysis: Principles and applications. John Wiley & Sons, 2000.
29. Sobrino, J.A.; Rodríguez, J.A.S. Recent advances in quantitative remote sensing. Universitat de València, 2002.
30. Sonker, I.; Tripathi, J.N.; Swarnim. Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio method in Sikkim Himalaya. Quat. Sci. Adv. 2022, 8, 100067. https://doi.org/10.1016/j.qsa.2022.100067.
31. Van, W.C. Statistical landslide hazard analysis ILWIS 2.1 for windows application guide. ITC Publication, 1997.
32. Voogd, J.H. Multicriteria evaluation for urban and regional planning. PhD Thesis 1 (Research TU/e / Graduation TU/e), Delftsche Uitgevers Maatschappij, Delft, 1982. doi:10.6100/IR102252.
33. Gorum, T.; Fan, X.; van Westen, C.J.; Huang, R.Q.; Xu, Q.; Tang, C.; Wang, G. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 2011, 133, 152–167. https://doi.org/10.1016/j.geomorph.2010.12.030.
34. Phạm, Q. Bù Đăng: Thiệt hại do thiên tai ước tính hơn 6,650 tỷ đồng. Trực tuyến: https://baobinhphuoc.com.vn/news/9/147469/bu-dang-thiet-hai-do-thien-tai-uoc-tinh-hon-6-650-ty-dong (Cập nhật 7/10/2024).